Heteronuclear Metal Cluster Nitrides via NO Cleavage Neil D. Feasey and Selby A. R. Knox* Department of Inorganic Chemistry, The University, Bristol BS8 1TS, U.K. Heating $[M(CO)_2(NO)(\eta-C_5H_5)]$ and $[M_2(CO)_6(\eta-C_5H_5)_2]$ (M = Mo or W) together at 200 °C yields metal cluster nitrides $[M_3(N)(O)(CO)_4(\eta-C_5H_5)_3]$ (M₃ = Mo₃, Mo₂W, MoW₂, and W₃); isotopic labelling reveals that the co-ordinated oxygen does not evolve from NO, whose oxygen appears in CO₂. We recently reported the structural identification of the cluster compound $[Mo_3(N)(O)(CO)_4(\eta-C_5H_5)_3]$ (1), containing nitrogen with an unprecedented T-shaped geometry.¹ Its unusual synthesis, from $[Mo_2(CO)_4(\eta-C_5H_5)_2]$ and ethyl diazoacetate, led us to investigate more rational routes to this class of cluster with an exposed low-co-ordinate nitrogen of potentially high reactivity. The presence of both N and O co-ordinated in (1) suggested experiments with the nitrosyls $[M(CO)_2(NO)(\eta-C_5H_5)]$ (M = Cr, Mo, W) as precursors, with a view to effecting NO bond cleavage. For the molybdenum and tungsten compounds this has been achieved in reaction with $[M_2(CO)_6(\eta-C_5H_5)_2]$ (M = Mo or W) which give (1), its tritungsten analogue (2), and the rare heteronuclear species (3) and (4). Heating (200 °C, ca. 1 h, no solvent, evacuated glass tube) [Mo(CO)₂(NO)(η -C₅H₅)] with [Mo₂(CO)₆(η -C₅H₅)₂], and [W(CO)₂(NO)(η -C₅H₅)] with [W₂(CO)₆(η -C₅H₅)₂], gave (1) and new dark-blue crystalline air-sensitive [W₃(N)(O)(CO)₄-(η -C₅H₅)₃] (2), respectively, in low yield. Under these conditions [M₂(CO)₆(η -C₅H₅)₂] (M = Mo or W) decarbonylates to triple metal-metal bonded [M₂(CO)₄(η -C₅H₅)₂], which we take to be an active reagent. Heating [M(CO)₂(NO)(η -C₅H₅)] alone does not afford (1) or (2). I.r. [1 938w, 1 893s, and 1 833m,br. cm⁻¹ (CH₂Cl₂ solution)], ¹H n.m.r. [δ 5.64 (s, 10 H) and 6.12 (s, 5 H) (CDCl₃ solution)], and mass [(P-nCO)⁺; n = 0,2,3,4] spectra identify (2) as structurally very similar to (1), with both terminal and semi-bridging CO ligands and the same fluxional process which averages the environments of the η -C₅H₅ ligands on M² and M³. The first heteronuclear metal cluster nitride [PtRh₁₀(N)- (1) $M^1 = M^2 = M^3 = Mo$ (2) $M^1 = M^2 = M^3 = W$ (3) $M^1 = W$, $M^2 = M^3 = Mo$ (4) $M^1 = Mo$, $M^2 = M^3 = W$ (CO)₂₁]³⁻ was reported very recently, and contains five-coordinate nitrogen.² The new heteronuclear clusters [Mo₂W(N)- $(O)(CO)_4(\eta - C_5H_5)_3$] (3) and $[MoW_2(N)(O)(CO)_4(\eta - C_5H_5)_3]$ (4), with three co-ordinate nitrogen, may be obtained either by heating (conditions as above) [Mo(CO)₂(NO)(η -C₅H₅)] with $[W_2(CO)_6(\eta - C_5H_5)_2]$ or $[W(CO)_2(NO)(\eta - C_5H_5)]$ with $[Mo_2 (CO)_6(\eta-C_5H_5)_2$]. These dark-blue crystalline compounds are air-sensitive, especially in solution, but less so than (2). The i.r. spectra [(3): 1955w, 1909s, and 1859m,br.; (4): 1950w, 1 897s, and 1 849m,br. cm⁻¹ (CH₂Cl₂ solution)] reveal that they have the same basic structure as (1) and (2). The MoW₂ complex (4) shows three cyclopentadienyl signals in the ¹H n.m.r. spectrum [δ 5.48 (s, 5 H), 5.73 (s, 5 H), and 6.13 (s, 5 H) (CDCl₃ solution)] and a strong Mo=O stretch in the i.r. [914s cm⁻¹ (Nujol mull)], establishing the arrangement of metal atoms depicted and the absence of fluxionality. For the Mo₂W complex the ¹H n.m.r. spectrum [δ 5.57 (s, 10 H) and 6.15 (s, 5 H)] identifies two η -C₅H₅ groups as being equivalent, probably on a time-average basis, and points to the arrangement (3) It is attractive to visualise the nitrido-cluster being formed by addition of two $[M(CO)_2(\eta - C_5H_5)]$ radicals to a sixteenelectron $[M(N)(O)(\eta-C_5H_5)]$ species generated by thermolysis of $[M(CO)_2(NO)(\eta - C_5H_5)]$. However, the cluster formation is clearly much more complicated. Heating together [Mo(CO)₂- $(NO)(\eta-C_5H_5)$], labelled with 13.8% N¹⁸O, and $[Mo_2(CO)_6-$ (η-C₅H₅)₂] provides (1) containing no ¹⁸O detectable by i.r. or mass spectroscopy. It is therefore apparent that the M=O unit found in the nitrido-clusters does not derive from NO, but from one of several other possible sources (O2, H2O, glassware). Nitrido-metal carbonyl clusters have been obtained previously3-5 from nitrosyl complexes and it was suggested5 that nitrosyl oxygen could appear in CO₂. We can now confirm this possibility. The heating together of [Mo(CO)₂(N¹⁸O)- $(\eta-C_5H_5)$] and $[Mo_2(CO)_6(\eta-C_5H_5)_2]$ does produce $CO^{18}O$, identified by mass spectroscopy. We are grateful to the S.E.R.C. for the award of a Research Studentship to N.D.F. Received, 6th July 1982; Com. 783 ## References - N. D. Feasey, S. A. R. Knox, and A. G. Orpen, J. Chem. Soc., Chem. Commun., 1982, 75. - 2 S. Martinengo, G. Ciani, and A. Sironi, J. Am. Chem. Soc., 1982, 104, 328. - 3 S. Martinengo, G. Ciani, A. Sironi, B. T. Heaton, and J. Mason, J. Am. Chem. Soc., 1979, 101, 7095. - 4 M. Tachikawa, J. Stein, E. L. Muetterties, R. G. Teller, M. A. Beno, E. Gebert, and J. M. Williams, J. Am. Chem. Soc., 1980, 102, 6648. - D. E. Fjare and W. L. Gladfelter, J. Am. Chem. Soc., 1981, 103, 1572; Inorg. Chem., 1981, 20, 3533.